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Synchronization for a pair of chaotic oscillators is studied both numerically and experimentally. The two oscillators
are coupled unidirectionally, namely, in the master slave configuration. When the coupling strength is systematically
varied, different regimes of chaotic synchronization such as no, phase, lag and complete are identified. The existence
of natural lag synchronization for unidirectional coupling is by virtue of a small parameter mismatch between the
master and the slave oscillators. Numerical calculations are carried out in the Rossler model whereas the experiments
are performed using a pair of electrochemical oscillators.

1. Introduction

Synchronization of nonlinear dynamics has been studied
exhaustively in diverse physical,!® chemical,* physiological,’
and ecological systems.® These synchronization phenomena can
usually be observed via appropriate coupling of nonlinear
systems. An alternate way to attain synchronization of nonlinear
dynamics is to subject the uncoupled systems to a common
external forcing. For the coupling scenario, there exist two
different schemes, namely, bidirectional and unidirectional.
Bidirectional coupling involves the situation wherein the two
oscillators influence each other mutually. Since this bidirectional
coupling is believed to be generic in a majority of natural
processes, it has generated utmost interest in the scientific
community. However, it is easy to motivate studying the
synchronization phenomena under unidirectional coupling as
there may exist numerous nonlinear processes that function
within the premises of master slave configuration. The scenario
for common forcing includes two uncoupled nonlinear systems
subjected to a common deterministic or stochastic forcing. It is
realized that while the two uncoupled nonlinear systems manifest
generalized synchronization with respect to the superimposed
forcing, they exhibit complete synchronization between themselves.

The synchronization phenomena persist if one chooses to
work with chaotic dynamics, a special class of nonlinear
behavior. Chaotic synchronization seems counterintuitive as the
sensitive dependence to the initial conditions, leading to
divergence of the nearby trajectories, is the signature for chaotic
dynamics. This seems to be at odds with the convergence of
dynamical behavior, a requirement for attainment of synchro-
nization among coupled systems. However, the emergence of
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chaotic synchronization’~!'? has been verified both theoretically
and experimentally in a plethora of natural processes. This
concept of chaotic synchronization has attracted the attention
of numerous researchers over the last 15 years and at present is
being keenly investigated in the context of spatially extended
systems in general and for a network of oscillators in particular.
Books''"!* and review articles>!* written by scientists from
different areas provide testimony to the popularity and the
multidisciplinary nature of this field.

In the present work, we report numerical and experimental results
involving the synchronization of nonidentical (parameter mismatch)
chaotic oscillators subjected to a unidirectional coupling. The main
motivation for the present work was to find the entire synchroniza-
tion sequence for unidirectional coupling analogous to the one
already reported for the bidirectional coupling.~!7 Systematically
varying the coupling constant enabled us to identify the possible
domains of the synchronization, including the first detection of
natural lag synchronization for a pair of nonidentical chaotic
oscillators under unidirectional coupling in a real system.'® Lag
synchronization corresponds to a state for which the amplitudes
of the two oscillators are nearly identical but there exists a constant
time lag between the two dynamics. Our simulations and experi-
ments provide evidence, under unidirectional coupling, for the entire
transition sequence involving transformations from a state of no
synchronization — phase synchronization — lag synchronization
— complete synchronization. Moreover, we present experimental
results involving the induction of lag synchronization using the
technique of introducing a time delay in the coupling term. Contrary
to its natural lag counterpart, wherein the lag observed between
the two chaotic time series depends on the system parameters, the
lag provoked here is uniquely determined by the time delay
introduced in the coupling term. Therefore, it is relatively easy to
control/alter the lag time between the two chaotic time series.
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Figure 1. Numerical results, using the Rossler model, showing the different regimes of synchronization as a function of the parameter mismatch
(Aw = w,, — wy) and the coupling constant (&). The labels N, P, L, C correspond to the no, phase, lag and complete synchronization domains. The

model parameters are a = 0.165, f = 0.2, ¢ = 10.0 and w,, = 0.95.

2. Numerical Results

To reveal the entire synchronization sequence numerically,
two chaotic Rssler attractors'® were coupled unidirectionally
as shown in eqs 1—6.

Em = T OnVm T Zn (M

Vi = O X T ayy, 2)

2o =fFT 2.0, — O 3)

X, = —woy, — 7z, T elx, — x) 4)
Ve = wx, + ay, (5)

i =f+ z(x, — © (6)

The subscripts m and s correspond to the master and slave
oscillators respectively. The coupling term e(x;, — x;) is
introduced in one of the evolution equations (eq 4) for the slave
oscillator, and the parameter mismatch Aw is determined by
(Om — wy).

Figure 1 shows the numerically generated bifurcation diagram
in the Aw vs € plane revealing the location and extent of the
different domains of synchronization observed. The labels N,
P, L and C correspond to the no, phase, lag and complete
synchronization respectively. The model parameters are pre-
sented in the corresponding figure caption. The similarity
function (discussed later) calculations were used to classify the
different regions of synchronization provoked.

Subsequently, keeping the parameter mismatch constant (Aw
= 0.038), the coupling constant € was monotonically augmented.
Figure 2 shows the simulation results for the coupled chaotic
Rossler oscillators. For zero coupling, the two chaotic attractors
oscillate independently. Figure 2a depicts the chaotic evolution of
the x,, (solid line) and x, (dotted line) variables for the model
systems. The absence of any mutual correlation between the two
time series becomes more evident if one generates the x;, vs Xx;
plot shown in Figure 2b. The resultant attractor of Figure 2b is
structureless, indicating that the dynamics are located in the domain
of no synchronization. As the coupling constant ¢ is increased, the
coupled dynamics exhibit phase synchronization. This phase
synchronization effect, illustrated in the time series of Figure 2c,
is characterized by the absence of correlation in the amplitude
domain while in the frequency domain phase-locking is observed.
The x,,, vs x; attractor for the coupled system is presented in Figure
2d. It reveals a closed curve, typical for phase synchronized
dynamics. Incrementing the coupling strength further reveals the
inception of lag synchronization of chaotic behavior for the coupled
system. This natural lag behavior is known to be generic for
bidirectionally coupled systems'>™'7 with a small parameter
mismatch. However, the existence of natural lag synchronization
for unidirectional coupling has not yet been reported. Figure 2e
shows the time series of x,, and x, exhibiting unidirectional lag
synchronization. To reiterate, lag synchronization is defined as a
synchronous regime for which the states of the two oscillators are
nearly identical but there exists a constant time lag between the
two dynamics.

This constant time lag 7 observed is an intrinsic property of
the coupled oscillators. The x,,(t — 7) vs x,(?) plot, depicted in
Figure 2f, reveals that the resultant attractor falls along the line
of identity confirming the induction of lag synchronization.
Finally, for large amplitudes of the coupling constant (¢) the
chaotic dynamics, a small parameter mismatch notwithstanding,
enter the regime of complete synchronization. This is evident
from the superimposed time series of Figure 2g. Also, the x,
Vs x; attractor collapses on the identity line as shown in Figure
2h.

To quantify the numerical observations involving the different
domains of synchronization, a similarity function'>? between the



Chaotic Synchronization under Unidirectional Coupling

J. Phys. Chem. A, Vol. 113, No. 32, 2009 9053

%, (0

x, (0

x.m(t- :L')

X, (0

0 10 20
Integration steps

30 40 -15 15

0
x, (1)

Figure 2. The different synchronization phenomena recorded as (&) was increased monotonically. A parameter mismatch (Aw = 0.038),
where w,, = 0.95, was introduced. The other model parameters are a = 0.165, f = 0.2, ¢ = 10.0. (a) The two superimposed chaotic time
series of (xy,xs) for € = 0.05. (b) The x,,(f) vs x4(¢) plot for the time series of (a). For this coupling strength the dynamics were located in
the domain of no synchronization. (c¢) The two superimposed chaotic time series of (x,,,xs) for e = 0.15. (d) The x,,(¢) vs x,(¢) plot for the time
series of (c). For this coupling strength the dynamics were located in the domain of phase synchronization. (e) The two superimposed chaotic
time series of (xp,x;) for € = 0.47. (f) The xn(r — 7) Vs x4(¢) plot for the time series of (e). For this coupling strength the dynamics were
located in the domain of lag synchronization. (g) The two superimposed chaotic time series of (xy,x;) for € = 1.5. (h) The x,,(7) vs x,(¢) plot
for the time series of (g). For this coupling strength the dynamics were located in the domain of complete synchronization.
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Figure 3. Similarity functions S(7) calculated using the numerical time series presented in Figure 2. The curves labeled N, P, L, C correspond to

the domains of no, phase, lag and complete synchronization respectively.

chaotic time series for the two coupled oscillators was calculated.
Similarity function computes a time averaged difference between the
two time series (xp,x;) taken with a time shift 7 and is defined as

(bt — 0 — x,F)
[ O)x 2O

S*(r) =

Figure 3 shows the similarity functions calculated using the numerical
time series of x;, and x, obtained for different amplitudes of the
coupling constant.

The curve labeled N corresponds to simulations where the
coupling constant is zero and therefore the dynamical
behavior is located in the domain of no synchronization. The
similarity function S(7) for this case is practically independent
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Figure 4. The schematic of the experimental setup constructed to study
chaotic synchronization under unidirectional coupling. It involves two
electrochemical cells with the three electrodes (labeled 1 (reference),
2 (anode), 3 (cathode)) connected via a computer in which all the
relevant computations are carried out. The anodic voltage of the master
cell V,, remains constant while the anodic voltage of the slave cell is
continuously varied as V; = Vo + (I, — ).

of 7'% and has an average value of ~+/2. Upon increasing
the coupling constant, phase synchronization, depicted by the
curve labeled P, emerges. The minimum in this curve
indicates the existence of a characteristic time shift between
the two chaotic time series. The appearance of lag synchro-
nization, at higher coupling constants, is illustrated by the
similarity curve labeled L. For this scenario, S(z) — 0 for an
appropriate lag time. This appropriate lag time coincides with
the delay (7) observed between the two chaotic time series
of x, and x; shown in Figure 2e. The similarity function
labeled C reveals a monotonically increasing line (S(z) — 0
for T = 0), a behavior typical for oscillators located in the
domain of complete synchronization.

3. Experimental Results

Synchronization experiments under unidirectional coupling
were carried out in an electrochemical cell consisting of three
electrodes, namely, anode, cathode and the reference, im-
mersed in an electrolyte solution. The anodes were made of
iron (Aldrich 99.98% purity) disks with a diameter of 6.3
mm shrouded by epoxy to ensure that the dissolution was
restricted to the surface of the anode in contact with the
electrolyte solution. The cathode was a graphite bar with a
diameter of 6.3 mm, and the reference was the standard
saturated calomel electrode (SCE). The electrolyte solution
used was a mixture of 1.0 M sulfuric acid, 0.4 M potassium
sulfate and 53.66 mM of potassium chloride. A volume of
250 mL was maintained in the cell.!” The temperature of the
cell was controlled to be around 300 K. The experiments
were carried out potentiostatically wherein the anodic
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potential (V) between the anode and the reference is
maintained constant. The anodic current (/) between the anode
and the cathode is the system observable. The system
parameter (V) is appropriately tuned such that the dynamical
behavior of anodic current (/) is rendered chaotic. In contrast
to our earlier work,!” the present experimental configuration
involved anodes facing downward. Moreover, the operating
conditions such as volume and temperature are different. Due
to these differences in the two experimental configurations
the potential window for which chaotic dynamics are
observed is shifted. The diagnostic tools used to characterize
the anodic current time series (results no presented) were
the power spectra, return maps and finally the reconstruction,
using embedding, of the underlying chaotic attractor.

The biggest challenge was to configure the existing electro-
chemical cell to enable unidirectional coupling. This was
eventually achieved by setting up a pair of bipotentiostats (PINE
Model AFRDES), each one connected to an independent
electrochemical cell, used to control the two anodic potentials
(Vin,Vs) individually and measure the two anodic currents (/;,,,/5)
simultaneously.

Figure 4 shows the schematic of the setup employed to study
chaotic synchronization under unidirectional coupling. Under
the master slave configuration, V,, remains constant, whereas
Vj is varied continuously by the coupling term (e(Z,,, — I)) that
is proportional to the difference between the anodic currents of
the master (/,,) and the slave (/) oscillators.

Experiments were carried out to identify the different domains
of synchronization exhibited by a pair of nonidentical chaotic
oscillators subjected to unidirectional coupling. Apart from the
inevitable inherent differences between the two electrochemical
cells, a small parameter mismatch (different anodic voltages)
was intentionally introduced between the two anodes. However,
it was ensured that the underlying dynamics remain chaotic.
Figure 5 shows the experimental results divulging the different
domains of synchronization under unidirectional coupling. The
anodic current time series (/,, (solid line), /; (dotted line)) for
the domains of no, phase, lag and complete synchronization
are presented in the left panels whereas the resultant attractors
are shown in the right panels. Analogous to the numerical results
presented in the previous section, a similarity function!>-20-22
between the chaotic time series for the two coupled oscillators
was calculated to quantify the experimental observations. Figure
6 shows the similarity functions computed using the anodic
current time series for different coupling strengths. It clearly
shows the emergence of different domains (N, P, L, C) of
chaotic synchronization in the experiments. However, in contrast
to the simulation results, S(7) for experiments fails to reach zero
for the lag and complete synchronization. This could be
attributed to significant levels of internal noise in conjunction
with a drift in the experimental dynamics.

Finally, we were also able to induce lag synchronization by
introducing an intentional delay in the coupling term. Using a
coupling of the form (/,(t — 7) — I(#)) ensures that the time
series (/) for the slave oscillator is delayed by 7 in comparison
to the anodic current time series (I,,) of the master oscillator.?
Figure 7 shows two such time series for different values of the
time delay used in the coupling term.

Contrary to the natural lag, the phase shift between the two
oscillators for this scenario is uniquely determined by the delay
introduced in the coupling term.



Chaotic Synchronization under Unidirectional Coupling

J. Phys. Chem. A, Vol. 113, No. 32, 2009

160 |-a), ., 4 160 ~
g [£
“ S
S N’
~> 80 80 e
L L L " L
160 ~
<
=
1~
; &
: 80 5
1 1 1 L 1 1
—_
160 <«
=
N’
=
S
80 ~—
e
160 f-g) ' ' ' ) 160 Fhy ]~
2 P ’ <
g g
=
“ =
~> 80 80 | 1.
1 1 L 1 1 1
0.0 1.0 2.0 3.0 4.0 80 160
(s) 1,(#) (mA)

9055

Figure 5. The different synchronization phenomena recorded as the coupling constant ¢ was augmented monotonically. A small parameter mismatch
was introduced intentionally by choosing the two anodic voltages to be 1315 mV (V,;) and 1300 mV (V) respectively. (a) The two superimposed
chaotic time series of the anodic currents (/,,(¢),/,(¢)) where the coupling constant was chosen to be 0 mV/mA. (b) The I,,(¢) vs I(¢) plot for the time
series of (a). For this coupling strength the dynamics were located in the domain of no synchronization. (c) The two superimposed chaotic time
series of the anodic currents (/,,(7),/(f)) where the coupling constant was chosen to be 0.012 mV/mA. (d) The I,,(¢) vs I(¢) plot for the time series
of (c). For this coupling strength the dynamics were located in the domain of phase synchronization. (e) The two superimposed chaotic time series
of the anodic currents (/,,(¢),/,(#)) where the coupling constant was chosen to be 0.025 mV/mA. (f) The ,,(t — ) vs I,(¢) plot for the time series of
(e). For this coupling strength the dynamics were located in the domain of lag synchronization. (g) The two superimposed chaotic time series of
the anodic currents (/,,(7),/,(f)) where the coupling constant was chosen to be 0.12 mV/mA. (h) The 7,,(¢) vs I(¢) plot for the time series of (g). For
this coupling strength the dynamics were located in the domain of complete synchronization.
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Figure 6. Similarity functions S(7) calculated using the experimental time series of anodic currents presented in Figure 5. The curves labeled N,
P, L, C correspond to the domains of no, phase, lag and complete synchronization respectively.
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Figure 7. Artificially induced lag synchronization using an intentional delay in the coupling term. The anodic voltages were chosen to be 1315 mV
(Vi) and 1300 mV (V) respectively. The coupling constant was chosen to be 0.15 mV/mA. The upper trace corresponds to a delay of 30 ms,
whereas the lower trace corresponds to a delay of 60 ms employed in the coupling term.

4. Conclusions

In conclusion, our results provide evidence of the entire
transition route from the domain of no synchronization up until
the region of complete synchronization for a pair of unidirec-
tionally coupled nonidentical chaotic oscillators. The reason we
chose the Rossler system for numerics was that an earlier work'®
had reported an analogous transition sequence in the Rossler
model under bidirectional coupling. This included the elusive
lag synchronization. So it was natural for us to take the same
model and look for the corresponding sequence under unidi-
rectional coupling. Our numerical results in conjunction with
previous works'>~!7 indicate that lag synchronization is inde-
pendent of the nature of the underlying coupling. Furthermore,
our results indicate that a necessary condition for the emergence
of the lag synchronization is the parameter mismatch that
generates a frequency difference between the coupled chaotic
oscillators.

Moreover, the entire transition sequence found numerically
could be reproduced in experiments involving coupled electro-
chemical cells. This included the detection of the hard to find
lag synchronization. Also we were able to observe lag synchro-
nization by suitable usage of delay in the coupling term. Using
this method one can control the lag time between the master
and the slave oscillator by appropriately tuning the delay
introduced in the coupling term. The experimental results were
obtained despite the presence of significant levels of intrinsic
noise and system drift. This gives credence to the notion that
the different manifestations of the synchronization phenomena
under unidirectional coupling are generic in nature and therefore
would persist in other real systems.
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